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For the first time the possibility of the description of the products of non-
random irreversible polycondensation by the theory of branching processes is
rigorously substantiated. The formalism of this theory is shown to be efficient in
finding any statistical characteristics not only of finite molecules but those of a
polymer network as well. Exact equations are derived and their simplified forms
are presented for networks being formed in the vicinity of the gel-point. Errors
arising under the application of an approximation based on the traditional sta-
tistical approach are evaluated proceeding from the analysis of the numerical
solutions of these equations.
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1. INTRODUCTION

An extremely important phenomenon in a wide variety of processes in
physics, chemistry, biology, medicine, and engineering is the formation of
large clusters by the union of many separate, small elements. Among such
processes are branched polycondensation in polymer science, flocullation,
and coagulation in colloid physics, nucleation in statistical physics of phase
transitions, antigen-antibody aggregation in immunology and etc. (1)

Despite differences between these processes, mathematical approaches used
for their description are quite similar. They imply the derivation and solu-
tion of an infinite set of kinetic equations of material balance for the con-
centrations of different size’ clusters. The most popular of them is the



Smoluchowski equation which has much in common with nonlinear
Boltzmann equation. (2) The steady interest to the cluster formation kinetics
in aggregation processes from physicists-theorists is witnessed by the great
number of works devoted to this problem (see reviews 3–5 and references
therein). Many of them deal with the gelation effect, i.e., the appearance of
an infinite-size cluster, which in the polycondensation theory corresponds
to a polymer network. Problems of the calculation of its topological char-
acteristics can not be solved by straightforward recourse to the
Smoluchowski kinetic equation but call for a statistical method. Its
rigorous substantiation for the non-random aggregation accompanied by
formation of polymer gel has apart from scientific value also a practical
significance for the mathematical modeling of industrial processes of the
network polymers’ synthesis.

The point is that many of such polymers are manufactured by step-
growth polymerization of monomers with number of functional groups
exceeding two. For such a branched polycondensation the average size of a
polymer molecule progressively increases to diverge at a certain instant
when an infinite gel network appears. Thereafter the weight fraction of gel
wg in the reaction system will grow whereas the fraction of sol ws=1 − wg

will diminish in parallel with the decrease of the average size of its constit-
uent finite molecules. Finding their distribution for size and composition as
well as determining the statistical moments of this distribution are among
major challenges to a quantitative theory of branched polycondensation.
One of them that is of crucial practical significance consists in establishing
the dependence of quantity wg and statistical characteristics of the topo-
logical structure of a polymer network on conversion of functional groups.

The most important among these characteristics of a network are the
number of elastically active chains n and the number of elastically effective
nodes m per one monomeric unit. To these latter there belong the nodes
from which not less than three paths in the infinite molecular graph of a gel
connect to infinity. A chain linking two such nodes is referred to as elasti-
cally active one. Parameters n and m play a leading role in the theory of
polymer networks’ elasticity since they enter into the expressions for the
elasticity modulus. The latter under the simplest theoretical approach is
proportional to the cyclic rank R=n − m of the molecular graph of a
network. This topological parameter equals, by definition, the least number
of edges of a graph, which should be removed to convert it into a tree.

Any polymer network comprises a pendant material that makes no
contribution into its elastic properties. Fraction of units wgp pertaining to
this material may be regarded as a criterion characterizing the quality of a
particular network. This will be the more attractive for practical implica-
tion the larger is the fraction of units wge=wg − wgp involved in elastically
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effective material. Given wge and n it is possible to calculate the number-
average length of an elastically active chain wge/n.

The foregoing characteristics of sol and gel are found in a standard
manner by a statistical method for the processes of branched polyconden-
sation describable by the ideal kinetic model. This is based on two
assumptions:

1. The absence of intramolecular reactions in molecules of finite size.

2. The fulfillment of the Flory principle for all reacting functional
groups.

The second assumption means that the reactivity of any such a group
depends neither on the configuration of a molecule (i.e., its size, composi-
tion and chemical structure) it belongs to nor on this group position in a
molecule. Otherwise stated the reactivities of all functional groups remain
unaltered throughout the synthesis being equal to the values, which these
groups possessed in monomers.

Nowadays the elaboration of the theory of random polycondensation
describable by the ideal model may be considered as completed. (6, 7) Pro-
ceeding from kinetic analysis of this model it was rigorously proved that
the statistical method can be employed for the calculation of any charac-
teristic of both sol and gel. Central idea of this method resides in reducing
the procedure of averaging over configurations of polymer molecules to
that over realizations of a certain branching process subsequently using an
advanced mathematical apparatus of the theory of these stochastic pro-
cesses. Bearing in mind indisputable advantages of statistical methods in
calculating configurational characteristics of polycondensates it is of prime
importance to reveal the potentialities of this method as applied to systems
where the Flory principle is violated.

This fundamental principle whose validity has been established for a
great many polycondensation systems is a good approximation for the
description of chemical transformations proceeding in them. However a
multitude of particular systems (mainly with participation of aromatic
monomers) have been revealed where the above principle does not hold.
The reason is the so called ‘‘substitution effect’’ due to steric, induction,
catalytic and other kinds of the influence of the reacted functional groups
on the reactivity of the neighboring unreacted groups. Originally this effect
was taken into account by Gordon and Scantlebury (8) who theoretically
studied the homopolycondensation of monomer RA f with f identical func-
tional groups within the framework of the First Shell Substitution Effect
(FSSE) model. This implies that the reactivity of any group A attached to
the monomeric unit is entirely controlled by its kind i, i.e., by number i of
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molecular bonds connecting this unit with other ones. When considering a
kinetic scheme of elementary reactions such a group may be ascribed the
kind i. Thus the FSSE model is completely specified by a matrix of kinetic
parameters with elements kij equal to the rate constants of elementary
reactions between functional groups of different kinds.

The authors of paper (8) postulated that all characteristics of the con-
figurational structure of non-random polycondensation products examined
are possible to calculate from the equations of the branching process that
describes random polycondensation but with other probability distribution
characterizing the reproduction of particles. In the zeroth generation the
probability to produce i descendants equals the fraction li of monads of
kind i, i.e., the fraction of monomeric units R with i reacted groups Ā. In
all generations but the zeroth one particles reproduce with other probabil-
ities whose generating function (gf ) F is expressible in a simple manner
through gf F (0) of probabilities li

F (0)(u)= C
f

i=0
liu i F(u)=

dF(0)(u)
du

;dF(0)(u)
du

:
u=1

(1)

The mathematical apparatus of the branching processes theory enables one
to calculate any statistical characteristic of polycondensates provided
probability parameters l0,..., lf are given. To find them it was suggested (8)

to use thermodynamic or kinetic equations for equilibrium or irreversible
polycondensation regimes, respectively. In the framework of this monad
approach there were considered various problems of finding by the statis-
tical method of the characteristics of sol and gel formed during monomer
RA f polycondensation described by the FSSE model. (8–12) This system
being the simplest among non-ideal ones features, however, all main pecu-
liarities of the non-random step-growth polymerization. That is why we
will consider in this paper just this system with the perspective to address
the theory of non-random polycondensation of an arbitrary monomer
mixture in the framework of the FSSE model elsewhere. (13)

For a time the question of the validity of the Gordon branching
process for the description of the products of non-random polycondensa-
tion remained open. By the end of 70s it was established (6, 14, 15) that the
recourse to this stochastic process leads to the expression for the molecular-
weight distribution (MWD) other than that obtained from the solution of
the kinetic equations of irreversible polycondensation. The partial differ-
ential equation was derived (15) for the generating function (gf ) of this dis-
tribution allowing one to get the equations for the statistical moments of
MWD. From the condition of their divergence the value of the conversion
p=pg was calculated at the gel point for a wide range of kinetic
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parameters. (16) The equations of non-random polycondensation reported in
papers (15, 16) were rederived more than fifteen years later (17–19) as applied
only to the particular case of the simplified variant of the FSSE model
where the rate constants of elementary condensation reactions kij between
groups of kinds i and j are factorisable kij=kikj. In the framework of this
‘‘factorisable’’ model Mikes and Dusek (20) examined the dependence of the
gel-point pg under polycondensation of monomer RA3 on kinetic param-
eters k0, k1, k2 invoking for this purpose the Monte-Carlo method. The
comparison of the results of the computer simulations with those achieved
using the Gordon statistical method, i.e., the monad approach, prompted
the authors (20) to conclude that the values of pg found in two ways are vir-
tually identical excluding some specific values of kinetic parameters.
However this conclusion should be viewed with due caution because of two
circumstances. Firstly, Mikes and Dusek (20) confined themselves to the
value of monomer functionality f equal to three. Secondly, they performed
simulations in the framework of the factorisable FSSE model only. These
restrictions were relaxed in paper (21) where a comprehensive study was
undertaken of the influence of different factors on the error in value pg that
arises under the application of the approximation based on the Gordon
branching process. The calculations revealed the existence of an appreci-
able region of values of the kinetic parameters where the employment of
this approximation produces too large error in the value of critical conver-
sion in gel-point. (21)

Of special significance in the theory of non-random polycondensation
is the paper by Sarmoria and Miller. (22) They came up with the idea to use
the recursive statistical approach for the calculation of the molecular
weight of the products of this process formed during the pre-gelation stage.
This approach, being distinct from the Gordon statistical approach, (8, 9)

yields for random polycondensation the same results. (23) Because these
latter coincide with the results of the kinetic examination the employment
of the recursive approach in this case is well justified. Conversely, such a
substantiation for the non-random polycondensation is missing so far.

Critically important for a quantitative theory of non-random poly-
condensation is to answer the question of whether there is a branching
process capable of providing an exact statistical description of sol and gel.
In the present paper a rigorous kinetic substantiation of the existence of
such stochastic process is offered and the expressions for its probability
parameters are presented. Subsequent employment of the statistical method
permits one to calculate, in particular, the topological characteristics of a
polymer network governing its elasticity. The results of such a calculation
are reported below for polycondensation systems with various values of
elements kij of the matrix of the constants of elementary reactions. The
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comparison of the values of the above topological characteristics obtained
from the equations of the new branching process and the traditional one
makes possible to estimate the error occurring under the application of the
latter for mathematical modeling of the gelation processes.

The paper is organized as follows. In Section 2 we give brief presenta-
tion of the traditional statistical approach to the approximate calculation
of the characteristics of sol and gel. In Section 3 a new branching process is
introduced, and equations are presented enabling the calculation of the
exact values of the above characteristics. In Section 4 we discuss the sim-
plification of general relationships in particular case of factorisable model.
Section 5 is devoted to the comparison of the values of polymer network’s
characteristics obtained in the framework of the rigorous theory with the
approximate ones found using the formalism of the branching process put
forward by Gordon and co-workers. (8, 9)

2. GORDON’S STATISTICAL APPROACH

In the framework of this approach the statistical characteristics of a
polymer are found by means of the formalism of the branching process
with the only type of the reproducing particles. Their role is played here by
the reacted functional groups. The generating functions (gf ) of this
branching process (1) are governed exclusively by fractions l0,..., li,..., lf

of different type monomeric units the dependence on time t or conversion p
of which is obtainable from the solution of the set of equations

dli

dt
=ji − 1li − 1 − jili li(0)=di0 p=

1
f

C
f

j=0
jlj (2)

Here the following designations are employed

ji=M0 C
f − 1

j=0
k̃ijlj k̃ij=(f − i)(f − j) kij (3)

while M0 stands for overall concentration of all monomeric units. The
mathematical apparatus of the theory of branching processes makes pos-
sible to calculate in terms of the probability parameters {li} any statistical
characteristic of finite molecules and infinite network. Thus, for instance,
gf GW(s) of the weight molecular-weight distribution (MWD) of polycon-
densates fW(l) can be found by formula

GW(s) — C
.

l=1
fW(l) s l=sF(0)(u) (4)
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where the dependence u(s) of function u on dummy variable s can be found
from the solution of algebraic equation

u=sF(u) (5)

satisfying the condition u(0)=0. Derivatives of gf GW(s) at point s=1 are
connected in a simple manner with the statistical moments of MWD. This
enables one by differentiating GW(s) to derive expressions for weight
average PW, z-average PZ and other average numbers of units in a polymer
molecule. So, for the first of them we have

PW —
dGW

ds
:
s=1

=1+
pf

1 − L
, where L —

dF
du

:
u=1

(6)

The condition of the gel-point (where PW becomes infinite) is turning into
unity of quantity L that has the probabilistic sense of average number of
particles reproduced by a particle in one generation. When L > 1 relation-
ships (4) and (5) will define the MWD of the sol provided F (0) and F are
changed for their modified values

F̂ (0)(u)=
F (0)(uh)
F (0)(h)

F̂(u)=
F(uh)
F(h)

(7)

These are possible to get from relationships (1) where probability param-
eters li should be replaced by the fractions l̂i of units of different kinds in
the sol

l̂i=
lih

i

ws
, where ws= C

f

i=0
lih

i (8)

Quantity h=u(1) entering into expressions (7) and (8) has the meaning of
the probability for the number of the descendants generated by a particle in
all generations to be finite. This quantity represents the root of equation

h=F(h) (9)

which is the least in the unit interval between 0 and 1. Being equal to unity
before the gel-point p=pg this root then decreases with conversion p to
vanish at p=1.

Given expressions (7) any statistical characteristics of the MWD of
finite molecules can be found. In particular, value P s

W of such molecules
will be

P s
W=1+

p̂f

1 − L̂
, where L̂ —

dF̂
du

:
u=1

=
dF
du

:
u=h

(10)
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Quantities p̂ and L̂ have here just the same sense that p and L in expression
(6) referring, however, only to the sol but not to the entire system. In terms
of the theory of branching processes this signifies that among all its
realizations quantities p̂ and L̂ characterize only those, which do not tend
to the infinity. In order to calculate the dependence of the conversion of sol
functional groups p̂ on overall conversion of all groups p recourse should
be made to formula p̂=ph2/ws.

Turning to the statistical description of the gel one should recognize
monomeric units not only by kinds i but also by the number of paths k
conducing from a unit to the infinity. The fraction of such units equals

l (k)
i =liC

k
i h i − k(1 − h)k, where Ck

i =i!/(k!(i − k)!) (11)

Statistical sense of this formula is quite transparent. Indeed, every path
may either approach the infinity or not. The probabilities of these events
are equal to 1 − h and h, respectively. Because all paths in the molecular
graph of a network are statistically independent their probabilities have to
be multiplied. Hence, the conditional probability that among i paths just k
tend to the infinity while the remaining i − k do not is described by the
Bernoulli binomial distribution (11).

Under a statistical description of a gel of prime importance is the
probability distribution l (k) and its generating function T(y)

l (k) — C
f

i=k
l (k)

i T(y) — C
f

k=0
l (k)yk (12)

Knowing quantities l (k) one can calculate the fraction of units occurring in
gel wg, in its pendant material wgp and elastically active material wge=
wg − wgp as well as the fraction of units m that are elastically effective nodes

wg=1 − l (0)= C
f

k=1
l (k); wge=1 − l (0) − l (1)= C

f

k=2
l (k);

m=1 − l (0) − l (1) − l (2)= C
f

k=3
l (k)

(13)

Besides through l (k) such significant statistical characteristics of a gel are
also expressed as the number of elastically active chains of polymer
network per one unit n, number-average length of such a chain Ne and
cyclic rank of polymer network R

n=
1
2

C
f

k=3
kl (k) Ne=

wge

n
R=n − m (14)
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The above introduced quantities wge, n, m and R are defined per one
monomeric unit of polycondensation system, which is convenient when
considering this system theoretically. However, when the results obtained
are meant for the description of the properties of a polymer network, then
these characteristics should be defined per one monomeric unit of this
network. To do so one should divide the calculated values of the above
mentioned characteristics of a polymer network by the weight fraction of
the gel

ŵge=
wge

wg
; n̂=

n

wg
; m̂=

m

wg
; R̂=

R

wg
; N̂e=Ne (15)

To have gel structure parameters (13) and (14) calculated it will suffice
to find expressions for gf T (12), its first-order TŒ and second-order Tœ

derivative at point y=0 as well as derivative TŒ at point y=1. This is quite
apparent from expressions

l (0)=T(0) l (1)=TŒ(0) l (2)=Tœ(0)/2 (16)

n=[TŒ(1) − TŒ(0) − Tœ(0)]/2 (17)

which hold for any model of the branched polycondensation. In the
framework of the monad approach the substitution of l (k)

i (11) into (12)
leads to the following expression

T(y)= C
f

i=0
li(h+(1 − h) y) i=F(0)(h+(1 − h) y) (18)

where function F (0)(u) has been determined earlier (1). Differentiating gf
(18) and setting y=0 or y=1 it is an easy matter to get with allowance for
(16) and (17) the following relationships

l (0)=F(0)(h); l (1)=pf(1 − h) F(h); l (2)=pf(1 − h)2 FŒ(h)/2 (19)

n=pf(1 − h)[1 − F(h) − (1 − h) FŒ(h)]/2 (20)

where dependence h on conversion p is to be found from the solution of
Eq. (9). Substituting quantities (19) and (20) into expressions (13) and (14)
it is possible to determine the dependence on conversion of the statistical
characteristics of the topological structure of a polymer network.

Of great practical value are responsive gels (24–26) which have one
crosslinking per hundreds units. They are capable of absorbing and retain-
ing great amount of solvent that exceeds the mass of the polymer consti-
tuting gel by several orders of magnitude. Such gels are formed at conver-
sions just slightly exceeding the critical one pg. Gordon (27) proposed to call
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such polymer networks, synthesized in the very vicinity of the gel-point,
critically branched networks. The values of the characteristics of their
topological structure are found in the asymptotic limit p Q pg from general
relationships (13), (14), (19), and (20)

wg=c (1)e; wge=c (2)e2; m=c (3)e3;

n=
3
2

c (3)e3; R=
1
2

c (3)e3; Ne=
2c (2)

3c (3)e

(21)

The small parameter e occurring in these expressions has the following
form

e=De −, where e −=p − pg, D=2b/a (22)

Relationships for the coefficients c (1), c (2), and c (3) as well as for the quanti-
ties a and b, entering formulas (21) and (22), in the framework of the
Gordon approach are as follows

a= C
f

i=3
i(i − 1)(i − 2) li(pg);

b=−f C
f

i=0
(2i − 1) ji(pg) li(pg);C

f

i=0
ji(pg) li(pg)

(23)

c (1)=pgf; c (2)=c (1)/2; c (3)=a/6 (24)

3. RIGOROUS THEORY

When considering the irreversible non-random homopolycondensation
of monomer RA f the role of kinetically independent elements in conso-
nance with the extended Flory principle (6, 7) is performed by monomeric
units of different kinds. Here the dependence of their fractions li on time
or conversion is obtainable from the solution of kinetic equations (2) and
(3). Using the kinetic approach in order to study the non-random poly-
condensation of monomer RA f in the framework of the FSSE model it was
suggested (7, 15, 16) to characterize each molecule by vector l with components
l0,..., li,..., lf equal to the numbers of its monomeric units of different
kinds. Under such an approach the reaction system at every moment t is
described by concentration of molecules with fixed value of vector l.
To make this concentration dimensionless it is convenient to divide it
by overall concentration of monomeric units M0. For gf g(s, t) of this
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dimensionless concentration C(l, t) there was derived the following equa-
tion in partial derivatives

“g
“t

=M0 C
f

i=0
C

f

j=0
k̃ij

3 − lisj
“g
“sj

+
1
2

si+1sj+1
“g
“si

“g
“sj

4 (25)

whose solution at initial condition g(s, 0)=s0 permits finding gf of weight
MWD

GW(s) — C
.

l=1
fW(l) s l= C

f

i=0
si

“g
“si

:
si=s

(26)

Unlike for the ideal polycondensation the exact analytical solution of
Eq. (25) is hardly attainable. However, differentiating it term by term with
respect to the components of vector s and setting all of them equal to unity
it is possible to derive a closed set of ordinary differential equations for the
statistical moments of distribution C(l, t). Numerical solution of these
equations enables one to predict, for instance, the evolution with conver-
sion of weight-average PW, z-average PZ degree of polymerization of finite
molecules as well as to determine critical conversion pg at the gel-point. It
should be emphasized that working perfectly before the gel-point a kinetic
method fails to describe a reaction system at the gelation stage. Such a
description can be carried out, however, by the statistical method in terms
of a branching process.

To have this process defined the results reported in paper (16) should be
presented as follows

GW(s)=sF (0)[u] ui(y)=sFi(y; [u]) (i=0,..., f − 1) (27)

where the following designations are employed

F (0)[u]= C
f

i=0
F · · · F Pi(t; y0,..., yi − 1) D

i − 1

j=0
uj(yj) dyj (28)

Fi(y; [u])= C
f − 1

j=0
pij(y) F†

j (y; [u]) F†
j (y; [u])=

dF (0)[u]
duj(y)

1
Uj(y)

(29)

Uj(y) —
dF (0)[u]

duj(y)
:
u(y)=1

=jj(y) lj(y) pij(y)=
k̃ijlj(y)
ji(y)

(30)

Pi(t; y0,..., yi − 1)=exp[ − Ii(t)] D
i − 1

j=0
nj(yj) jj(yj) (31)

ni(y)=exp[Ii+1(y) − Ii(y)] Ii(t)=F
t

0
ji(y) dy (32)

Stochastic Branching Process 1283



It is easy to see that expressions (27) being similar to those (4) and (5) show
yet an essential distinction. Instead of gf F (0)(u) and F(u) (1), generating
functionals (GF) F (0)[u] (28) and Fi(y; [u]) (29) appear. In order to find
gf GW(s) of the weight MWD it is necessary according to expressions (27)
to solve a set of f integral equations for functions u0(y),..., uf − 1(y) and to
substitute the solution obtained into the expression for F (0)[u].

Relationships (27)–(29) admit simple probabilistic interpretation in
terms of the branching process. To its reproducing particles reacted func-
tional groups Ā correspond distinguished by ‘‘color’’ i and label y. Integer i
characterizes the kind of monomeric unit to which a given group was
attached at the moment y of its formation.

Function Pi(t; y0,..., yi − 1) represents the density of probability for the
particle-ancestor for the time lapse (0, t) to give birth to i descendants
Ā0(y0), Ā1(y1),..., Āi − 1(yi − 1) at the instants 0 < y0 < y1 < · · · < yi − 1 < t,
respectively. Any of these particles Āj(y) is incapable of reproducing until
it transforms into active particle Ā†

k(y). This latter during such a trans-
formation, that happens immediately after particle Āj(y) is born, differing,
generally speaking, from the former by color has the same label. Condi-
tional probability pjk(y) (30) of this transformation upon the summation
over index k yields, naturally, unity. In the next generation each active
particle Ā†

k(y) produces a set of non-active particles. The probability dis-
tribution of such sets has GF F†

j (y; [u]) related to GF F(0)[u] (28) of the
probability distribution of the sets of the descendants of the particle-ances-
tor by expression (29) resembling formula (1) which connects gf F(u) with
gf F (0)(u). Fundamental distinction between them is that the role of ordi-
nary derivative (1) is played now by functional derivative (29). Normalizing
function Uj(y) (30) entering in this expression has the sense of the rate of
the formation of groups Āj(y). Erasing of their labels and colors results in
obvious relationships

F
t

0
Uj(y) dy — m̄j(t)= C

f

i=j+1
li(t) C

f

j=0
m̄j(t)= C

f

i=0
ili(t)=pf (33)

where m̄j(t) is the overall number of color j reacted groups per one mono-
meric unit which are present in the reaction system by moment t.

The development of a population of the branching process in every
generation, beginning with the first one, proceeds in the same manner.
Each non-active particle from n-th generation immediately transforms into
active one with the same label. This newly formed particle gives later birth
in (n+1)-th generation to some set of daughter non-active particles. The
probability distribution of the transformation of particle Āi(y) into Ā†

j (y)
is described by the stochastic matrix with elements pij(y) (30) while the
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subsequent producing by particle Ā†
j (y) of the offspring is controlled by

GF representing the vector with elements F†
j (y; [u]) (29). Using the sta-

tistical method one may well skip the first transformation to consider the
branching process exclusively in terms of particles Āi(y) whose reproduc-
tion is governed by GF that is the vector with elements Fi(y; [u]) (29).

Under the statistical approach function ui(s; y) occurring in Eqs. (27)
has simple meaning. It represents gf of the probability of the number of the
descendants produced in all generations by particle Āi(y). Of considerable
importance here are functions

hi(y)=ui(1; y) zi(y)=
dui

ds
:
s=1

(34)

The first of them is the probability for the overall number of particle Āi(y)
descendants to be finite whereas the second one is average number of par-
ticles in a population produced by this particle. Probabilities h0(y),...,
hf − 1(y) that the reacted groups Ā0(y),..., Āf − 1(y) are involved in polymer
molecules of finite size is found from the solution of the set of f nonlinear
integral equations

hi(y)=Fi(y; [h]) (i=0, 1,..., f − 1) (35)

which result from Eqs. (27) provided variable s is put unity. Equations (35)
before gel-point p < pg have the sole solution h=1 where all components
of vector h are unity. Under conversions p > pg within hypercube
0 < hi(y) < 1 (i=0,..., f − 1) a nontrivial solution emerges describing the
sol. Its weight fraction in the reaction system is defined by expression

ws — GW(1)=F(0)[h] (36)

where the dependence of vector h components on conversion p is obtain-
able from the solution of Eqs. (35).

Weight average degree of polymerization of finite molecules can be
calculated by formula

PW(t) —
dGW

ds
:
s=1

=F (0)[h]+F
t

0
dy C

f − 1

i=0
Ui(y) zi(y) (37)

where functions zi(y) (34) are found from the solution of the set f of linear
integral equations

F
t

0
dt C

f − 1

j=0
Cij(y, t) zj(t)=hi(y) (i=0,..., f − 1) (38)
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Their left-hand part may be considered as the action upon vector z(y) of
linear integro-matrix operator C with kernel

Cij(y, t)=dijd(y − t) −Fij(y, t) (39)

Here dij is the Kroneker-delta, d(y − t) denotes the Dirac delta-function
while Fij(y, t) stands for the matrix-function

Fij(y, t) —
dFi(y; [u])

duj(t)
:
u=h

= C
f − 1

n=0
pin(y) F†

nj(y, t)

= C
f − 1

n=0

k̃inF
(0)
nj (y, t)

ji(y) jn(y)
, where F (0)

nj (y, t) —
d2F (0)[u]

dun(y) duj(t)
:
u=h

(40)

Weight average degree of polymerization of sol (37)

PW(t)=F (0)[h]+C
i

C
j

F
t

0
F

t

0
Ui(y) C (−1)

ij (y, t) hj(t) dy dt (41)

is expressed through the Green function C (−1)
ij (y, t) which represents the

kernel of operator C−1, inverse to that C with kernel (39).
Expressions (37)–(41) hold not only at the stage of a polymer network

formation but before the gel-point as well. In the last case vector h should
be replaced by vector 1 with all components equal unity. Value PW (41)
diverges when the largest eigenvalue of operator C−1 turns into infinity. To
this moment of time, t=tg, (conversion p=pg) there corresponds vanish-
ing of minimal eigenvalue of operator C and, thus, turning into unity of the
largest eigenvalue of operator with kernel Fij(y, t) (40).

To derive the relationships for gel structure parameters (13) and (14) it
is enough to have the expression for gf T(y) (12). A straightforward rea-
soning enables its derivation for the FSSE model in hand

T(y)=F (0)[h+(1 − h) y] (42)

where GF F (0)[u] was determined in the foregoing (28). Differentiating gf
T(y) (42) with respect to y it is easy, proceeding from (16), to get expres-
sions

l (0)=F (0)[h] l (1)=F
t

0
dy C

f − 1

i=0
[1 − hi(y)] Ui(y) F†

i (y; [h])

l (2)=1
2 F

t

0
F

t

0
dy dt C

f − 1

i=0
C
f − 1

j=0
[1 − hi(y)][1 − hj(t)] F (0)

ij (y, t)

(43)

n=1
2 F

t

0
dy C

f − 1

i=0
[1 − hi(y)] Ui(y){1 −F†

i (y; [h])} − l (2) (44)
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analogous to those arrived at in the framework of the monad approach
(19) and (20).

A rigorous theoretical analysis shows that in the case of critically
branched networks asymptotic expressions (21) and (22) retain their
appearance. The values of coefficients c (1), c (2), and c (3) as well as those of
quantities a and b calculated in the framework of the rigorous theory by
relationships we derived are distinct from those (23) and (24) arrived at in
the framework of the Gordon approach. However, it is not worthwhile to
present them here because of their relatively cumbersome appearance.

4. FACTORISABLE MODEL

Within the framework of this kinetic model of polycondensation any
element kij of matrix of the constants of elementary reactions between
groups Ai and Aj is presumed to be equal to the product kikj of the factors
characterizing the reactivity of each of them. When this condition holds the
statistical description of the sol and the gel becomes far more simple as
compared to the general model. This simplification consists in the fact that
only one type of particles corresponding to the reacted functional groups
irrespective of their kinds participates in the branching process, which
appears under such a description. However, these particles, Ā(y), unlike
those involved in the traditional branching process (see Section 2), are
supplied with label y indicating the instant of the formation of reacted
group Ā. In this case general equations (27)–(30) are reduced to

GW(s)=sF (0)[u] u=sF(y; [u]) (45)

where GFs F (0) and F look as follows

F (0)[u]= C
f

i=0
F · · · F Pi(t; y0,..., yi − 1) D

i − 1

j=0
u(yj) dyj (46)

F(y; [u])=F†(y; [u])=
dF (0)[u]

du(y)
1

U(y)
, U(y)=1C

j
k̃jlj

22

(47)

Expressions (34)–(44), derived in the preceding Section, in particular case
of the factorisable model turn out to be markedly simplified since all vector
and tensor functions entering in them become scalars. Besides, no opera-
tions of summation over indices that characterize kinds of particles are
present in these formulas any longer. As a result, calculations of the statis-
tical characteristics of the sol and the gel prove to be noticeably facilitated.
Thus, for instance, within the framework of the factorisable model instead
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of the solution of the set of f nonlinear integral equations (35) only one
such equation is supposed to be solved

h=F(y; [h]) (48)

5. RESULTS OF CALCULATIONS

The theory presented above makes it possible to calculate any statisti-
cal characteristics of the molecular structure of a network formed in the
course of irreversible polycondensation of monomer with any functionality
f. Two aspects are of special interest when conducting calculations and
discussing their results. The first of them consists in the analysis of the
dependencies of the quantities wg, wge (13) and R (14) on conversion p at
different values of the kinetic parameters of the system. The second aspect
implies the comparison of the results of calculations performed by the
formulas of the rigorous theory and those of the Gordon approach as well
as the determination of the degree of accuracy of the latter. These aspects
will be exemplified in this section by homopolycondensation of the three-
functional monomer. The expressions employed for the calculations can be
readily obtained from general formulas of Section 3 written for particular
case of f=3 provided one goes in them from time to conversion using
relationship

f
dp
dt

=U, where U — C
f

i=0
Ui (49)

which immediately follows from Eqs. (2), (3), and (30). Under such transi-
tion all formulas will comprise only reactivity ratios oij=kij/k00, rather
than the kinetic constants kij themselves. The relationships for statistical
characteristics of the topological structure of a polymer network for the
case in hand have especially simple appearance in the framework of the
Gordon approach. Under such an approach the quantity h (9) is deter-
mined from the solution of the square equation

3ph=l1+2l2h+3l3h2 (50)

that in the region p > pg has nontrivial solution h=l1/(3l3). The expres-
sions for wg, wge and R (13) and (14) are as follows

wg=1 − l0 − l1h − l2h2 − l3h3 R=l3(1 − h)3/2

wge=l2(1 − h)2+l3(1 − h)3+3l3h(1 − h)2
(51)
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To calculate the statistical characteristics of the topological structure
of a polymer network in the framework of the rigorous theory it is neces-
sary to find the solution of the set of Eqs. (35) and to calculate on this
solution the corresponding integrals. In order to solve this problem we
employed the simple iterations method. (28) Our calculations revealed, that
irrespective of the choice of the initial approximation the iterations con-
verge at fixed conversion p to the same unique solution h(p −). This identi-
cally equals unity before the gel-point p < pg and represents certain func-
tion of p − at p > pg. Essentially, the number of iterations necessary here to
calculate the solution with the given accuracy dramatically rises in the
vicinity of the gel-point. So, for instance, it goes from several tens to
several hundreds under change of the conversion from the values, at which
the fraction of gel is several tens percent to those corresponding to
wg M 10%. This peculiarity substantially hinders the construction of the
curves wg(p), wge(p) and R(p) in the neighborhood of the gel-point. The
arising difficulties can be overcome in various ways whose efficiency will be
discussed for gels the characteristics of which are calculated according to
the monad approach. The results of such calculations are shown for the
certain system in Table I which demonstrates that the asymptotic expres-
sion works well only in the very vicinity of the gel-point.

Therefore we resorted to two variants, A and B, of the spline-inter-
polation. (29) According to the A method we perform interpolation in the
interval between the critical conversion and the least one where the itera-
tions still converge quickly enough and the characteristic in question can be
calculated with reasonable accuracy. So at the right boundary we use the
tabulated value of the function to be interpolated, which is obtained by
calculations. At the left boundary we impose the condition of vanishing of

Table I. Gel-Fraction Values Calculated Using Different Methods in the Vicinity of

the Gel-Point pg=0.1325 in the Framework of the Factorisable Model for Kinetic

Parameters o1=10, o2=10

p, % wg · 100a wg · 100b wg · 100c wg · 100d

13.81 3.00 3.06 2.89 3.05
14.23 5.00 5.38 4.84 5.07
15.43 10.00 12.01 9.84 10.11

aExact dependence.
bAsymptotic.
cA method of spline interpolation.
dB method of spline interpolation.
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this characteristic at the gel-point. The B method differs from the A
method in that an additional condition on the dependence’s first derivative
is placed at the left boundary. The curve’s wg(p) slope at the gel-point is
found from asymptotic formulas (21–24). Turning to Table I one can note
that the employment of the spline-interpolation leads to significantly better
results as compared to that of asymptotic formulas (21)–(24), for wg. The
most effective is the B method, which permits calculating the gel-fraction
with the accuracy sufficient for the comparison with the results of the
majority of experimental data on critically branched networks. We checked
that analogous conclusions about the efficiency of the above methods can
be drawn for the calculations of other topological characteristics of the
responsive gels as well. These inferences remain valid if the calculations are
conducted not only for the monad approach but also for the rigorous
theory as well. When discussing the results of the calculations we will focus
on the simplest case of the factorisable model. This is uniquely determined
at f=3 by merely two parameters, o1 and o2.

As it was already mentioned one of the main goals of our calculations
lies in the elucidation of the degree of accuracy of the Gordon approach in
the various regions of the values of kinetic parameters o1, o2. This can be
done in several ways, two of which are illustrated below. The first of them
allows a direct estimate of the error arising under the monad approach.
The results obtained when using such an approach are presented on Fig. 1.
It is of interest to compare this figure with the analogous one (see Fig. 1 in
paper 21) showing the degree of inaccuracy of the Gordon approach under
the calculation of the critical conversion pg at the same values of the kinetic
parameters o1, o2. Such comparison leads to the important conclusion that
for half of the considered systems employment of monad approach for the
calculation of the structure characteristics of a polymer network is com-
pletely incorrect. This is connected with the fact that the approximate and
the true values of the quantities calculated can differ several times and even
more. However, the application of the Gordon approach seems to be jus-
tified for certain systems. Among them are those where o1=1, as well as
the systems with monotonic acceleration (o2 > o1 > 1), for instance, with
o1=10, o2=10. The results presented in paper 21 give ground, at the first
glance, for the conclusion that to such systems those with monotonic
retardation (o2 < o1 < 1) can be also assigned. However, such a conclusion
turns out to be incorrect as it can be easily seen from Fig. 1. In the system
with parameters o1=0.1, o2=0.1 the dramatic discrepancy in the approx-
imate and the true values of all gel structure characteristics can be observed
despite tiny difference (3%) in the respective values of critical conversion
pg. For this system the distinction in the values of the cyclic rank amounts
to nearly three times. Noteworthy, the error of the cyclic rank R̂ (15)
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6 0.97
1.00 0.99

3 0.37
0.75 0.64

9 0.10
0.10 0.40

8 0.68
0.96 0.80

7 0.93
1.03 0.99

5 1.00
1.00 1.00

2 0.33
0.46 0.72

4 0.99
1.00 1.00

1 0.18
0.73 0.42

 

2lgκ

0
0

-1

-1

1

1lgκ

Fig. 1. Ratios of quantities wg, ŵge and R̂ calculated on the basis of the Gordon approach
to those computed in the framework of the rigorous theory at fixed conversion, where the
weight fraction of gel calculated by the second method equals 0.5. Each rectangle corresponds
to certain system with given values of kinetic parameters o1 and o2 whose decimal logarithms
are the coordinates of the dot in the center of this rectangle. In its upper left corner there
stands the system number, while the above mentioned ratios are presented in the remaining
corners. Such ratios for wg, ŵge and R̂ are shown in the lower left, lower right and upper right
corners, respectively.

calculation at other values of the kinetic parameters as well is noticeably
higher than that of wg and ŵge. For the vast majority of the systems pre-
sented on Fig. 1 the approximate values of all these characteristics happen
to be lower as compared to the true ones. However, there exist systems
with such values of parameters, for example o1=10, o2=10, where this is
not the case.

The second criterion, which we employed to estimate the error of the
monad approximation is as follows. A polymer network of given weight is
considered, which has been synthesized in the course of homopolyconden-
sation of monomers with known concentration. For such networks with
fixed wg the possibility of theoretical prediction of their topological char-
acteristics is of practical interest. This can be realized in the framework of
both the rigorous theory and the Gordon approach. The described criterion
is especially useful when considering critically branched networks where the
employment of the first criterion often makes no sense. Indeed, under the
application of the latter to such networks there are systems in which the gel
is absent according to the Gordon approach.

We calculated the fraction of elastically effective material, the cyclic
rank of the network and the average length of the elastically active chain
by both methods and compared the values obtained. The results of such
comparison presented in Fig. 2 demonstrate that the discrepancy between
the monad approximation and the rigorous theory, estimated by the second
criterion, proves, as a rule, to be noticeably smaller than that, assessed by
the first criterion. However, despite for the majority of the systems in
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6 1.00
1.00 1.00

3
0.941.08
0.87 9

0.860.89
0.97

8
0.881.04
0.85

7
0.931.08
0.85

5 1.00
1.00 1.00

2
0.841.17
0.72

4 0.99
1.00 0.99

1
0.701.38
0.51

1lgκ

2lgκ 

0
0 1

-1

-1

1

Fig. 2. Ratios of quantities Ne, ŵge and R̂ calculated on the basis of the Gordon approach
to those computed in the framework of the rigorous theory at fixed weight fraction of gel
wg=0.1. The designations are the same as in Fig. 1 except lower left corner, where the above
mentioned ratio for Ne now stands.

Fig. 2 the inaccuracy of the Gordon approach is less than 15%, there exist
systems (e.g., the first one) where such an error reaches 50%. Noteworthy,
under consideration of polycondensation systems 1-9 proceeding from the
second criterion, their set, where the monad approximation is good
enough, turns out to be almost the same as that indicated earlier (21) on the
basis of the analysis of the critical conversion pg value.

Some notion about how well the Gordon approach works for the cal-
culation of the topological characteristics of a gel in the whole range of
conversions is given by Fig. 3. It shows that for systems 4-6 with o1=1 the
monad approximation at any value of o2 yields results practically indiscer-
nible from the precise ones. The reason is weak dependence of the proba-
bility distribution of reproducing particles Ā(y) on instant y of their
formation (see Section 4). It shows up, for example, in the fact that the
solution of Eq. (48) for the case o1=1 in the range of parameter o2 con-
sidered is, according to our calculations, practically independent of y. The
physical reason has to do with the random character of elementary reac-
tions between functional groups, leading to formation of linear chains
entering polymer network. Looking at Fig. 3 one may get impression that
this approximation works well also for systems 3 and 7 characterized by
monotonic retardative and accelerating FSSE, respectively. However, this
conclusion as applied to system 3 is valid only if the comparison of the
approximate and precise numerical results is performed by the second cri-
terion. Conversely, when such a comparison is carried out by the first cri-
terion the discrepancy between these results is tangible, as it was mentioned
above. The reason is the steep slope of the conversion dependence of wg. In
systems 1, 2, 8, 9 characterized by nonmonotonous constant ratios, the
employment of the Gordon approach leads to noticeable errors which are
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Fig. 3. Solid lines depict the dependencies of the gel-fraction wg (upper curve) and of the
fraction of elastically effective material wge (lower curve) on conversion, calculated by the
equations of the rigorous theory for various systems. The conversion dependencies of these
quantities computed in the framework of the monad approximation are shown as dashed
lines.

the greater the more pronounced the nonmonotonicity. These inferences
qualitatively agree with those made earlier (21) from the analysis of the gel-
point position. It can also be seen from Fig. 3 that the decrease of the
parameter o2 value at any fixed o1 results in the rise of the critical conver-
sion pg (which was established earlier (21)) along with the sharpening of the
conversion dependencies of wg and wge.

Having in mind possible applications it is interesting to analyze the
dependence of the topological characteristics of the critically branched
networks on kinetic parameters of a system. Turning to the Table II, it can
be noted that with the diminishing of o2 the appreciable decrease of the
cyclic rank value is observed concurrently with the increase of the average
length of the elastically active chain. These tendencies are the most pro-
nounced when o1=10. Among the systems analyzed system 9 is that,
where the cyclic rank takes on the minimal value while the average lengths
of elastically active chain assumes the largest value. Similar values of R̂ and
Ne (15) in other systems are obtainable only for networks of significantly
lesser weight which is impractical. Essentially, for the calculation of the
topological characteristics of gel in system 9 the application of the Gordon
approach is conducive to substantial error. Hence, such a calculation
should be performed by resorting to the equations of the rigorous theory.
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Table II. Fraction of Elastically Effective Material ŵge, Cyclic Rank of Polymer

Network R̂ and Average Length of Elastically Active Chain Ne for the Systems Pre-

sented in Fig. 3 at the Gel-Fraction wg=0.1

system 1 2 3 4 5 6 7 8 9

ŵge · 102 4.98 3.98 3.22 5.00 3.49 2.84 14.8 7.20 4.31
R̂ · 104 7.87 4.35 1.66 7.33 2.05 0.47 42.3 3.49 0.31

Ne 21 30 65 23 57 201 12 69 463

The above conclusion that the monad approximation works well for
the calculation of the topological characteristics of gel for the systems with
monotonous constant ratios was arrived at by the analysis of the results of
the calculations performed in the framework of the factorisable model.
However, when turning to the general model the degree of the accuracy of
the Gordon approach can, generally speaking, deteriorate. (21) To illustrate
this inference we chose one of the simplest nonfactorisable kinetic models
with reactivity ratios

oij=o+(1 − o) di0dj0 (52)

In the framework of this model we considered two systems, I and II,
characterized by the strong retardative (o=0.01) and accelerating
(o=100) FSSE, respectively. For the determination of the degree of the
accuracy of the monad approximation as applied to these systems we
employed the methodology used above to analyze the factorisable model.
Our results (see Figs. 4 and 5) indicate that the error of the Gordon
approach when going from the factorisable model to the nonfactorisable
one markedly increases only for the system with accelerating FSSE. Con-
versely, for those with retardative FSSE such an increase is not pro-
nounced. This inference is in qualitative agreement with that made
earlier (21) on the basis of the analysis of the critical conversion pg value.

3.57
0.32 11.50.831.11

0.92

0.68
0.74 0.960.550.67

0.28(a)

(b)

Fig. 4. Estimate of the accuracy of monad approximation by the first (a) and the second (b)
criteria for kinetic model (52) with retardative (o=0.01, system I) and accelerating (o=100,
system II) FSSE. The procedures of the evaluation by each of these criteria and the designa-
tions inside the rectangles are the same as in Figs. 1 and 2, respectively.
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Fig. 5. Dependencies of the gel-fraction wg and of the fraction of elastically effective
material wge for the systems I and II (see caption to Fig. 4) on conversion. Curves are
designated here in the same manner as in Fig. 3.

6. CONCLUSIONS

In this work we have theoretically examined the irreversible branched
homopolycondensation of a monomer comprising an arbitrary number of
identical functional groups. Their reactivity does not remain unaltered in
the course of the synthesis, as it takes place under a random polyconden-
sation, changing with the entry into the reaction of neighboring groups in a
monomeric unit. This system described by the FSSE kinetic model is the
simplest one among those where the stepwise polymerization is of cooper-
ative character. The model in hand presuming the absence of the cycliza-
tion reactions in finite size polymer molecules is nowadays one of the most
extensively used in polymer chemistry. (7, 23) More than 20 years ago it was
established (14–16) that the employment of the traditional statistical approach
for the description of this non-random polycondensation of monomer RA f

leads to the results other than those obtained from the solution of the
kinetic equations of the FSSE model. In this connection it has been spe-
culated (18, 20) that the statistical methods based on the formalism of the
theory of branching processes are not appropriate to deal with some non-
random polycondensation systems. This viewpoint was questioned by
Sarmoria and Miller (22) who put forward a recursive probabilistic approach
that provided, on their opinion, an exact description of this process in the
framework of the FSSE model. Which of these two standpoints is correct
can not be decided unless the recourse to the kinetic method is made.

The analysis of the kinetic equations carried out in this paper has
allowed us to provide a rigorously substantiated answer to the above ques-
tion that is under discussion in literature up to now. It was shown that the
calculation of the MWD of sol molecules as well as the characteristics of
the topological structure of a gel can be performed using the formalism of
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the theory of branching processes where the role of the reproducing par-
ticles (as in the case of random polycondensation) is played by reacted
functional groups. However, now these should be distinguished by ‘‘color’’
i and label y. So, symbol Āi(y) denotes reacted group Ā formed at moment
y from group A attached to a monomeric unit with i reacted groups. For
the probability parameters of this branching process with colored labeled
particles equations are derived that describe the dependence of these
parameters on conversion. Given these parameters one can calculate the
statistical characteristics of the products of the non-random polycondensa-
tion invoking the mathematical apparatus of the theory of general branch-
ing processes. (30, 31) Similar stochastic processes with labeled particles found
their application, for instance, under the theoretical consideration of
biological populations, neutron nuclear reactions and cosmic rays. (30, 31)

The statistical method, whose rigorous substantiation is presented in
this paper, is particularly efficient in calculating the parameters of the
topological structure of a network being formed for the polycondensation.
Among them are fractions of monomeric units of gel involved either in
pendant or elastically active material, the number of elastically effective
nodes and elastically active chains as well as average length of these latter.
We calculated these network structure parameters at different values of
conversion of functional groups and compared their values with those
obtained from the equations of the Gordon approximate statistical
approach. Such a comparison gave us an opportunity to estimate quanti-
tatively the accuracy of this approximation for different domains of the
kinetic parameters of the FSSE model. We performed just the same esti-
mate as applied to critically branched polymer networks formed within the
region of conversion p close to the gel-point pg. In case of such networks
asymptotic expressions have been derived for their structure parameters,
which are the more accurate the lesser is the quantity e −=p − pg. In this
work we presented results of these parameters’ calculations for critically
branched networks.

The statistical method we have introduced above to describe non-
random polycondensation differs from that advanced earlier by Sarmoria
and Miller (22) at least in two peculiar features. Firstly, our method has a
rigorous kinetic substantiation and, secondly, it makes use of the
thoroughly developed mathematical apparatus of general theory of
branching processes. The last circumstance enables one in a straightfor-
ward manner to cope with the task of the description of sol and gel escap-
ing some artificial tricks employed in paper (22) like the discretization of time
of a polycondensation process and the consideration of virtual crosslinking
of superspecieces. Incorporation of these tricks for the calculation of the
statistical characteristics of gel is, apparently, conducive to substantial
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difficulties. These seem to be responsible for the fact that no results on the
calculation of the above network characteristics were reported by Sarmoria
and Miller. (22) The algorithm of the calculation of such characteristics by
means of our original statistical method admits the extension to the pro-
cesses of non-random irreversible polycondensation of an arbitrary
monomer mixture described by the FSSE model. (13)

This paper addresses one particular model of non-random polycon-
densation. The underlying assumption for this FSSE model, commonly
accepted nowadays in polymer chemistry, is that the reactivity of a func-
tional group is controlled exclusively by number of reacted neighboring
groups. Here the violation of the Flory principle is due to the short-range
effects, (7) i.e., to the influence on the reactivity of molecule fragments
situated in the vicinity of the reaction centre. If such an influence is from
all units of a polymer molecule they speak about long-range effects. (7) To
the authors’ knowledge a rigorous quantitative polycondensation theory
taking account of these effects is missing so far. However, it is possible to
comment on how such effects could influence the gelation process provided
the reactivity of a group in a polymer molecule is presumed to be con-
trolled by number of units l in this molecule rather than by its configura-
tion. Under such an assumption the problem of finding the distribution of
molecules for size l reduces to the solution of the Smoluchowski equation.
The kernel of the integral operator in this equation is the rate constant
K(l −, l') of the condensation reaction with participation of molecules
comprising l − and l' units. The character of the behaviour of function
K(l −, l') in asymptotic limit l −

Q ., l'
Q . is critical for the analysis of

gelation. Of particular interest is the model with kernel K(l −, l') ’ (l −l')w

describing ideal polycondensation (when w=1) and polycondensation
where only those groups react that are located at the surface of molecules
(when w=2/3). For this model with the decrease of the exponent w from 1
to 1/2 the gel point moves towards higher conversions to make the
polymer network formation absolutely impossible at w < 1/2. (33–35)
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